Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.
نویسندگان
چکیده
Insects are a prime source of inspiration towards the development of small-scale, engineered, flapping wing flight systems. To help interpret the possible energy transformation strategies observed in Diptera as inspiration for mechanical flapping flight systems, we revisit the perspective of the dipteran wing motor as a bistable click mechanism and take a new, and more flexible, outlook to the architectural composition previously considered. Using a representative structural model alongside biological insights and cues from nonlinear dynamics, our analyses and experimental results reveal that a flight mechanism able to adjust motor axial support stiffness and compression characteristics may dramatically modulate the amplitude range and type of wing stroke dynamics achievable. This corresponds to significantly more versatile aerodynamic force generation without otherwise changing flapping frequency or driving force amplitude. Whether monostable or bistable, the axial stiffness is key to enhance compressed motor load bearing ability and aerodynamic efficiency, particularly compared with uncompressed linear motors. These findings provide new foundation to guide future development of bioinspired, flapping wing mechanisms for micro air vehicle applications, and may be used to provide insight to the dipteran muscle-to-wing interface.
منابع مشابه
A Bio-inspired Wing Driver for the Study of Insect-Scale Flight Aerodynamics
Insect flight studies have advanced our understanding of flight biomechanics and inspire micro-aerial vehicle (MAV) technologies. A challenge of centimeter or millimeter scale flight is that small forces are produced from relatively complex wing motions. We describe the design and fabrication of a millimeter-sized wing flapping mechanism to simultaneously control pitch and stroke of insect and ...
متن کاملDistributed power and control actuation in the thoracic mechanics of a robotic insect.
Recent advances in the understanding of biological flight have inspired roboticists to create flapping-wing vehicles on the scale of insects and small birds. While our understanding of the wing kinematics, flight musculature and neuromotor control systems of insects has expanded, in practice it has proven quite difficult to construct an at-scale mechanical device capable of similar flight perfo...
متن کامل"Clicking" compliant mechanism for flapping-wing micro aerial vehicle
This paper presented a click mechanism, which is inspired by a Dipteran insect, for use in flapping-wing micro aerial vehicle. The clicking mechanism is integrated in a thorax-like compliant mechanism, which buckles and consequently produces a large wing stroke when driven by an electric motor. The thorax-like compliant mechanism can store elastic energy in flexible hinges and is good for stori...
متن کاملFlapping Wing Air Vehicles at Kaist
The flapping wing flight has superior maneuverability and aerodynamic advantages in a low Reynolds number regime. Nature’s flyers generate aerodynamic forces and moments from the various wing motions such as flapping and pitching to fly and sustain its flight stability. Bioinspired design of flapping air vehicle is one of the effective ways to exploit such a complex system. However the flapping...
متن کاملArtificial insect wings of diverse morphology for flapping-wing MAVs
The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 12 104 شماره
صفحات -
تاریخ انتشار 2015